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PICOSECOND DYNAMICS OF 12 .PHOTODISSOCIATION

P. Bado, P.H. Berens, ],P. Bergsma, S.B. Wilson and K.R. Wilson

Department of Chemistry, University of California, San Diego,
La Jolla, CA 92093 USA

E.J. Heller

Theoretical Division, T-12, Los Alamos National Laboratory,
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1. Introduction
While liquid solution reactions are much more important in chemistry, gas phase reactions are
much better understood. Given the central importance of solution reactions to inorganic, organic.
industrial and biochemistry, it is rather surprising that, as yet, there is not a single such reaction
whose molecular dynamics are understood in detail. Theoretical and experimental evidence already
makes clear that much of the important molecular dynamic action in solution reactions occurs on
the picosecond and subpicosecond time scales. The dihalogen photodissociation and recombination
reactions, X2 + h&-- X + X- X 2 , involving the simplest possible molecular reactants and pro-
ducts, diatomics, and in rare gas solution involving only two elements, seem excellent candidates
for study.

2. Theory
The first deterministic theoretical study of the molecular dynamics of reactions was by BUNKER
and JACOBSON [I], who computed the classical trajectories for 12 in CCI4 solvent represented by 26
spherical, structureless particles in a specular cube. MURREL, STACE and DAMMEL121
modelled the photodissociation of 12 in dense inert gases, 12 plus 22 gas atoms in a spherical, soft-
walled container. We have similarly modelled 12 plus 50 Xe atoms at liquid density in truncated
octahedral periodic boundary conditions[3, 41, computing the photodissociation, solvent caging.
atomic recombination and vibrational energy decay to the solvent from the new 12 molecule, as
shown in Fig. 1. The conclusion of all three molecular dynamic studies is that geminate recombina-
tion is usually a very fast process, over within a few picoseconds. An important caveat, and a
weakness in these theoretical studies, is that the process whereby the I atoms dissociating on an
excited state potential surface refind the ground state surface on which they recombine is not well
understood, and is therefore handled in these calculations by arbitrary assumptions which may be
incorrect. If so, the real time for geminate recombination may be longer than the few picoseconds
calculated.

FIg. 1. Time evolution in liquid Xe solution of
12 vibrational energy during reaction sequence

.- m of photodissociation (at time zero), solvent cag-
ing of some of the recoiling I atoms, radical

.- recombination, and vibrational loss to solvent.
Also shown is the equilibrium Boltzmann vibra-

,0-0 tional energy distribution before photodissocia-
tion. The vibrational energy distribution al-
ready bifurcates into two branches within the
0-5 ps period, the higher one corresponding to

10-15 those I atom pairs which have escaped the cage
0-5 and whose minimum energy is the 12 dissocia-

u,, n_ tion energy, and the lower one corresponding
0 to recombined 12 progressively losing vibration-

V.*TlONA EN(RY (o;,) al energy to the solvent.
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In addition, theoretical calculations by NESB17T and HYNES[5, 6] for 12 in rare gases and in
CO 4 and by our group[3, 4] in liquid Xe indicate that the decay to the solvent of the vibrational
energy in the newly reformed 12 molecule will require the order of a hundred to hundreds of
picoseconds, as shown in Fig. 1, considerably slower than the time required for geminate recombi-
nation. Note that these calculations are for solvent atoms or molecules which are very weakly
bound to one another, and that the vibrational relaxation might be quite different, for example, in a
strongly hydrogen-bonded liquid.

From our calculated molecular dynamics, plus the potential curves and transition dipole
moments, we can compute transient electronic absorption spectra[71, as shown in Fig. 2, which
includes the A-X, B-X, and the B" lu('rl) - X transitions. A related nonmolecular dynamics
spectral calculation has been carried out by NESBITT and HYNES[6]. A small quantum correction
by temperature scaling, which would be exact for the coordinate distribution in the harmonic limit,
is made to the equilibrium spectra which agree well with the known 12 experimental spectral
pointsi8). Note that spectra measured at different wavelengths follow different time histories,
which can in principle be used to follow the time evolution of the vibrational energy distribution of
the relaxing 12 r olecules.

WAVELENGTH (nm)
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R 72 Fig. 2. Transient electronic absorption spectra
7M 0-5 - - 1800 computed from molecular dynamics for 12 (in

PXe solution) reaction sequence of photodissoci-
I600 ~ ation, solvent caging, radical recombination,

56 and vibrational decay. Time zero is the photo-
2D A dissociation. The top curve is the computed

48 -1200 equilibrium spectrum before photodissociation
40 -"/ _-on which are superimposed the experimental

4]0 .1 3 10 points from Tellinghuisen [81.
95-100
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3. Expfiment
3.e ealiest picosecd experimental mutts were by the EISENTHAL JouLP9, 10], who measured

the trasient electronic absorption spectra after excitation at 530 rim. Decay times of -70 PS for 12

in hexdecane and -- 140 ps in CC4 were observed. Subsuently theme studies wee extended by
the EISENTHAL group to 12 in aromatic olvents[I I] which are believed to form orplexes with I
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atoms, and by LANGHOFFI121 who observed 12 photodissociation in several weakly associated
liquids, finding decay times in the -100-150 ps range. More recently, KELLEY and
RENTZEPIS[13] have observed 12 photodissociation in fluid and liquid Xe with a decay time of
-40 ps, as well as in CCI4, and similar experiments have been carried out by the PETERS
group[14. All of the above studies used second harmonic Nd pump light at -530 nrm. which, at
least in the gas phase, results in excitation largely to the bound B 0( 3f11) state which presumably
predissociates, but may absorb another photon in the meantime[]5, 161. A delay of -20 ps
between excitation and the maximum in the absorption curve has been attributed to absorption
from the B state 19, 13, 171. Thus, the linking of these experimental transient spectra to the molecu-
lar dynamics of the 12 photodissociation and recombination reaction is made difficult by the prob-
able presence of the additional processes of B state predissociation and absorption. We have
recently reported[31 transient absorption for 12 excited using an Ar*-dye (DCM) synchronously
pumped source at 710 nm into the dissociative A state, thus avoiding the problem of predissocia-
tion. In order to achieve the sensitivity needed to detect the very weak[8] 12 A state absorption, we
use a multiple modulation system[18] based on the discovery by HERITAGE[19] and LEVINE and
BETHEA[20, 211 that the noise in Ar synchronously pumped dye lasers falls off by several orders
of magnitude in going from the audio to the radio frequency region. We modulate the pump and
probe beams at two different radio frequencies and detect at the difference frequency, using inex-
pensive and readily available radio amateur equipment[I8]. In addition, we audio modulate the
pump beam and synchronously detect at that frequency. Decay times are shown in Fig. 3. We sug-
gest the hypothesis that vibrational decay might be expected to be faster for the more strongly
hydrogen-bonded solvents which are expected to have a greater spectral mode density in the range
of 12 vibrational frequencies. All the above experimental measurements suffer in interpretation
from the rather weak connection between molecular dynamics and electronic absorption, which is
further complicated by the possible presence of 12- solvent , I - solvent, and 12 -12 complexes.

25. - 0 -o~f QW)
_ C ;0o01 Fig. 3. Experimental transient electronic

absorption spectra for 12 in ethylene glycol
_ (0.2 molar, 1.3xlO-2 mole fraction), in

__ ethyl alcohol (0.33 molar, 1.9x10-2 mole
9.- 0 -__0+- fraction), and in CC14 (0.096 molar,

cc. 9.3x10- 3 mole fraction). All the spectra
C o 05- are for perpendicular orientation of linearly
:s 2,. polarized pump and probe beams.

"0 =W 0 +50 +0 -150 +200 250
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4. Discussion and Conclusion

* In summary, two hypotheses have been advanced: i) that geminate recombination for 12 is relatively
slow and thus accounts for the observed range of transient absorption decay times and ii) that gem-
inate recombination is relatively fast and that vibrational decay times to reach vibrational levels with
higher absorption instead account for the observed transient absorption decay times. At the present
time, the available theoretical and experimental tools have not been sufficiently powerful to cleanly
disprove either or both of these hypotheses.

Improvements in both theoretical and experimental tools should lead to more stringent tests.
On the theoretical side, molecular dynamics and spectral calculations can certainly be extended to a
variety of different solvents, and to different pump photon energies and thus different I atom recoil
energies. In addition, different assumptions as to the mechanism for relaxation to the ground state
potential curve can be tried out. Transient electronic absorption measurements suffer from the
intrinsic limitation of a weak connection to molecular dynamics. In contrast, transient Raman spec-
tra can directly reveal, for example, rotational and vibrational periods in the evolving reactants and
products. We have computed such transient spectra 13,4 for this reaction sequence. The
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equivalent resonance Raman spectra can also be calculated and they also will reveal much of the
underlying molecular dynamics, possibly including upper state recurrence times[22]. Thus Raman
spectra could provide a definitive test of the above hypotheses.

It is surprising, but true, that for no chemical reaction in solution, not even for one as sim-
ple and as well studied as 12 photodissociation and recombination, are the detailed atomic motions
by which it occurs yet known. Even such basic aspects are not certain as the order of magnitude of
the time required for caging and geminate recombination, and whether a direct deterministic or a
stochastic diffusional approach to geminate recombination is most appropriate.

This situation may soon change, as there is now a four order of magnitude time range, -100
fs to I ns, over which molecular dynamic calculations and short light pulse experiments can over-
lap. Transient infrared, Raman and electronic absorption spectra all reflect the underlying molecu-
lar dynamics of chemical reactions and can provide an interface at which theory and experiment
may meet. By comparing transient spectra computed from molecular dynamics with the equivalent
measured spectra, one can hope to discover the microscopic dynamics by which many chemical
processes occur.

Thanks for the support which has made this work possible to NSF Chemistry, ONR Chemis-
try, NASA-Ames, NIH Division of Research Resources, and Fonds National Suisse for fellowship
support to P. Bado.
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